SATELLITE-DERIVED BATHYMETRY USING CONVOLUTIONAL NEURAL NETWORKS AND MULTISPECTRAL SENTINEL-2 IMAGES

نویسندگان

چکیده

Abstract. Satellite-Derived Bathymetry (SDB) has been used in many applications related to coastal management. SDB can efficiently fill data gaps obtained from traditional measurements with echo sounding. However, it still requires numerous training data, which is not available areas. Furthermore, the accuracy problem arises considering linear model could address non-relationship between reflectance and depth due bottom variations noise. Convolutional Neural Networks (CNN) offers ability capture connection neighbouring pixels non-linear relationship. These CNN characteristics make compelling be for shallow water extraction. We investigate of different architectures using window sizes band combinations. use Sentinel-2 Level 2A images provide values, Lidar Multi Beam Echo Sounder (MBES) datasets are as references train test model. A set in-situ subimage pairs extracted perform training. The compared transform applied two other study Resulting ranges 1.3 m 1.94 m, coefficient determination reaches 0.94. generated a size 9x9 indicates compatibility reference depths, especially at areas deeper than 15 m. addition both short wave infrared bands four visible improves overall SDB. implementation pre-trained provides similar results depending on conditions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images

Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...

متن کامل

Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks

Robust vision-based pedestrian detection is a crucial feature of future autonomous systems. Thermal cameras provide an additional input channel that helps solving this task and deep convolutional networks are the currently leading approach for many pattern recognition problems, including object detection. In this paper, we explore the potential of deep models for multispectral pedestrian detect...

متن کامل

Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks

The availability of high-resolution remote sensing (HRRS) data has opened up the possibility for new interesting applications, such as per-pixel classification of individual objects in greater detail. This paper shows how a convolutional neural network (CNN) can be applied to multispectral orthoimagery and a digital surface model (DSM) of a small city for a full, fast and accurate per-pixel cla...

متن کامل

Evaluation and comparison performance of deep neural networks FCN and RDRCNN in order to identify and extract urban road using images of Sentinel-2 with medium spatial resolution

Road extraction using remote sensing images has been one of the most interesting topics for researchers in recent years. Recently, the development of deep neural networks (DNNs) in the field of semantic segmentation has become one of the important methods of Road extraction. In the Meanwhile The majority of research in the field of road extraction using DNN in urban and non-urban areas has been...

متن کامل

Herbal plants zoning using target detection algorithms on time-series of Sentinel-2 multispectral images (Amygdalus Scoparia)

Today, medicinal plants have a special place in the economy and health of a society. Due to the natural growth of many of these products, the necessity of zoning them for optimum and optimal utilization seems necessary. Traditional zoning solutions are not efficient due to their low accuracy and speed, therefore a new approach is needed. Remote sensing data have many applications in various fie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

سال: 2021

ISSN: ['1682-1777', '1682-1750', '2194-9034']

DOI: https://doi.org/10.5194/isprs-archives-xliii-b3-2021-201-2021